Cooperative effect of platinum and alumina for the selective reduction of nitrogen monoxide with propane

Megumu Inaba, Yoshiaki Kintaichi and Hideaki Hamada 1

National Institute of Materials and Chemical Research, Higashi, Tsukuba, Ibaraki 305, Japan

Received 13 June 1995; accepted 28 September 1995

Reduction of nitrogen monoxide with propane in the presence of oxygen proceeded not only on alumina-supported platinum but also on physical mixtures of alumina and silica-supported platinum, both of which are inactive for the selective NO reduction. Spillover, gas phase transfer of some reaction intermediates, or homogeneous propane oxidation seems responsible for the cooperative effect.

Keywords: nitrogen monoxide; selective reduction; propane; platinum; alumina; cooperative effect

1. Introduction

The selective reduction of nitrogen monoxide with hydrocarbons in the presence of oxygen is attracting much attention recently because this reaction is a promising measure for NOx removal in oxygen-rich exhaust gases such as diesel and lean-burn gasoline engine exhaust. Various zeolites [1–4], metal oxides [5,6], and noble metals [7] have been reported to have catalytic activity for this reaction. However, there are still arguments on the catalytic active sites and the reaction mechanism.

We reported that the activity of supported platinum catalysts depends strongly on the support and hydrocarbon species [8]. In the case of NO reduction on Pt/SiO_2 , unsaturated and aromatic hydrocarbons serve as excellent reducing agents. However, NO reduction does not proceed with saturated hydrocarbons. On the other hand, Pt/Al_2O_3 is active for NO reduction not only with unsaturated but also with saturated hydrocarbons. This suggests that the activity of Pt/Al_2O_3 for NO reduction with saturated hydrocarbons be attributed to the effect of the alumina support.

In this paper we report that the catalytic activity for NO reduction with propane is generated by cooperation of platinum and alumina and that this cooperative effect is observed even for the physical mixtures of alumina and Pt/SiO₂ for which platinum is not supported on alumina, although the catalytic activity is not sufficiently high for practical applications. Possible reaction mechanisms for this reaction will also be discussed based on the present experimental results.

2. Experimental

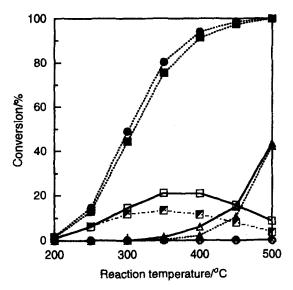
The alumina used in this study was obtained from Sumitomo Metal Mining (NK-16280, 250 m² g⁻¹), and the silica was Fuji-Davison SiO₂ (Cariact-10, $310 \text{ m}^2 \text{ g}^{-1}$). $0.5\%\text{Pt}/\text{Al}_2\text{O}_3$ was prepared by NE Chemcat with impregnation method using the same alumina (NK-16280) as the support. $0.5\%\text{Pt}/\text{SiO}_2$ was prepared by impregnating the silica with an aqueous solution of Pt(NH₃)₄(NO₃)₂, followed by reduction at $400^{\circ}\text{C in H}_2$.

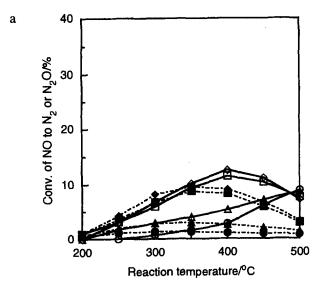
The catalytic reaction was carried out with a flow reactor by passing a gas mixture over a catalyst. The gas mixture contained 1000 ppm NO or NO_2 , 1000 ppm propane, and 10% O_2 diluted in helium. The effluent gas was analyzed by gas chromatography. A Molecular Sieve 5A column was used for the analysis of N_2 and CO_2 , and a Porapak Q column for that of N_2O_2 , CO_2 and hydrocarbons. Transmission electron microscopic analysis was made for catalyst characterization.

3. Results and discussion

Fig. 1 summarizes the activities of SiO₂, Al₂O₃, Pt/SiO₂ and Pt/Al₂O₃ for NO reduction with propane in the presence of 10% O₂. SiO₂ did not show catalytic activity, while Al₂O₃ catalyzed NO reduction to N₂ over 400°C along with oxidation of propane to CO and CO₂. Pt/SiO₂ did not catalyze NO reduction at all but oxidized propane to CO₂ over 250°C. In contrast, Pt/Al₂O₃ showed good activity for NO reduction with formation of CO₂ as the only oxidation product of propane over 250°C. It is noted that N₂O was formed in comparable amounts to N₂ on Pt/Al₂O₃ and that CO was not formed on Pt/SiO₂ and Pt/Al₂O₃.

To whom correspondence should be addressed.




Fig. 1. Activities of SiO₂, Al₂O₃, Pt/SiO₂ and Pt/Al₂O₃ for the selective reduction of NO with propane. NO conversion to N₂: (+) SiO₂, (△) Al₂O₃, (○) Pt/SiO₂, (□) Pt/Al₂O₃; NO conversion to N₂O: (■) Pt/Al₂O₃; C₃H₈ conversion to COx: (▲) Al₂O₃, (●) Pt/SiO₂, (■) Pt/Al₂O₃. NO = 1000 ppm, C₃H₈ = 1000 ppm, O₂ = 10%, catalyst weight = 0.2 g, gas flow rate = 66 cm³ min⁻¹.

The catalytic activities of physical mixtures of Pt/SiO₂ and Al₂O₃ are shown in figs. 2a and 2b. In this experiment, the mixtures were prepared by mixing Pt/SiO₂ and Al₂O₃ which had been crushed separately and sieved to desired grain size. When the grain size was large, the activity of the mixture of Pt/SiO₂ and Al₂O₃ for NO reduction was similar to that of Al₂O₃. It is amazing, however, that a deNOx activity similar to that of Pt/Al₂O₃ was observed when the grain size of the mixture was smaller, although the NO conversion was lower than that on Pt/Al₂O₃. The NO reduction activity

increased with decreasing grain size. It should be noted from fig. 2b that the conversion of propane to CO₂ was not affected much by the grain size. CO₂ was the only product of propane oxidation and the carbon balance was quite good. No other carbon-containing compounds than propane and CO₂ were detected.

Since the physical mixtures were not prepared by grinding Pt/SiO₂ and Al₂O₃ together in a mortar, mechanochemical effects are not responsible for the cooperative effect of the two catalytic components. To make sure that platinum and alumina did not change during the catalytic activity test, TEM micrographs of the mixture (80-100 mesh) after the activity test were taken. Fig. 3 shows micrographs of an alumina grain and a silica grain in the catalyst mixture, respectively. Apparently, black platinum particles with a diameter of about 10 nm existed not on alumina but on silica. Moreover, it was proved by elemental analysis that the alumina grains did not contain detectable amounts of platinum and that the silica grains were not contaminated by alumina. These results indicate that the physical mixture was still in the form of a mixture of Pt/SiO₂ and Al₂O₃ after the catalytic activity test.

This conclusion was also supported by the experiment shown in fig. 4. In this experiment the activity of a mixture of Pt/SiO₂ (smaller than 100 mesh) and Al₂O₃ (60–80 mesh) was tested. For this mixture, enhancement of the deNOx activity was also observed at about 300–350°C. After the test, the mixture was separated to the original Pt/SiO₂ and Al₂O₃ grains by sieving. The activity of the separated Pt/SiO₂ and Al₂O₃ was very close to that of the fresh catalyst samples, as shown in fig. 4. Slight decrease in the activity can be ascribed to loss of the sample during the sieving procedure.

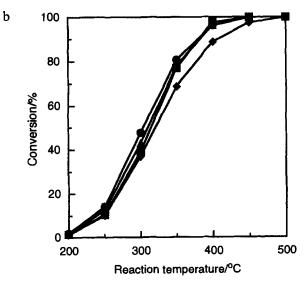
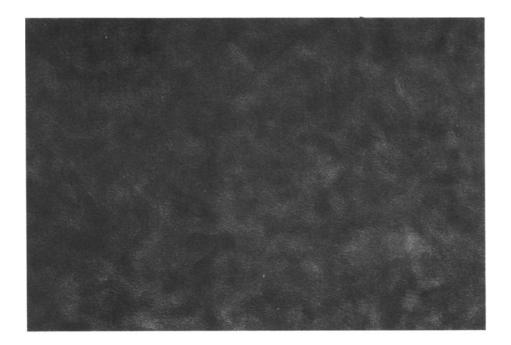
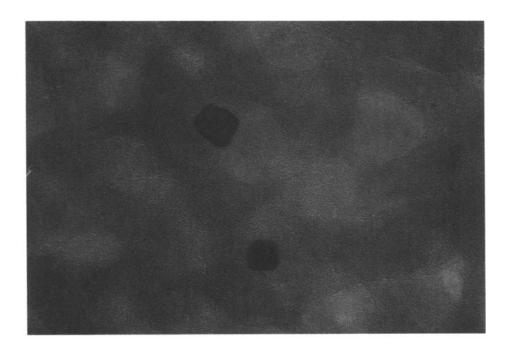




Fig. 2. (a) Conversion of NO in the selective reduction of NO with propane over physical mixtures of Pt/SiO₂ and Al₂O₃. NO conversion to N₂: (\bigcirc) 20–32 mesh, (\triangle) 42–60 mesh, (\square) 80–100 mesh, (\Diamond) 100– mesh; NO conversion to N₂O: (\bullet) 20–32 mesh, (\triangle) 42–60 mesh, (\blacksquare) 80–100 mesh, (\bullet) 100– mesh. NO = 1000 ppm, C₃H₈ = 1000 pp, O₂ = 10%, catalyst weight = 0.2 g Pt/SiO₂ + 0.2 g Al₂O₃, gas flow rate = 66 cm³ min⁻¹. (b) Conversion of propane in the selective reduction of NO with propane over physical mixtures of Pt/SiO₂ and Al₂O₃. C₃H₈ conversion to CO₂: (\bullet) 20–32 mesh, (\bullet) 42–60 mesh, (\bullet) 80–100 mesh, (\bullet) 100–mesh. The reaction conditions are the same as for (a).

|**△**−**□**| 10 nm

Fig. 3. TEM micrograph of the surface of an alumina grain (upper) and a silica grain (down) in the mixture of Pt/SiO₂ and Al₂O₃ after the activity test.

Consequently, it can be concluded that NO reduction results from some kind of cooperative effect between Pt/SiO_2 and Al_2O_3 because it is not plausible that only physical mixing brings platinum into contact with alumina. It was also confirmed experimentally that the

activity of Pt/SiO₂ or Al₂O₃ was not affected by changing their grain size.

The activities of Pt/SiO₂ and Al₂O₃ for the reduction of NO₂ instead of NO were examined next. As shown in fig. 5, Pt/Al₂O₃ and Pt/SiO₂ gave almost the same

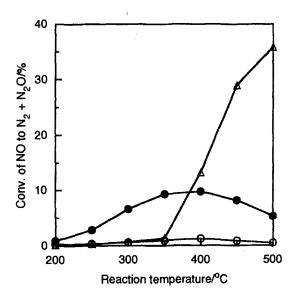


Fig. 4. Activity of Pt/SiO₂ and Al₂O₃ separated from a physical mixture. (●) Mixture of Pt/SiO₂ and Al₂O₃, (○) Pt/SiO₂, (△) Al₂O₃. The reaction conditions are the same as for fig. 2.

results for both NO reduction and NO₂ reduction. For example, NO₂ was not reduced to N₂ or N₂O on Pt/SiO₂. On Al₂O₃, however, the reduction of NO₂ took place more easily than that of NO. We already reported this fact and assumed that NO₂ be a reaction intermediate over alumina-catalyzed NO reduction [9]. Accordingly, one hypothesis may be that Pt/SiO₂ promotes oxidation of NO to NO₂ and that N₂ is formed through the reaction of NO₂ with propane on Al₂O₃. Actually Pt/SiO₂ is an effective catalyst for NO oxidation. However, it can be seen from figs. 2a and 5 that the formation of N₂ at 300 and 350°C from NO reduction on Pt/

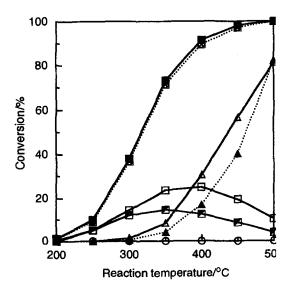


Fig. 5. Activities of Al₂O₃, Pt/SiO₂ and Pt/Al₂O₃ for the selective reduction of NO₂ with propane. NO conversion to N₂: (\triangle) Al₂O₃, (\bigcirc) Pt/SiO₂, (\square) Pt/Al₂O₃; NO conversion to N₂O: (\square) Pt/Al₂O₃; C₃H₈ conversion to COx: (\triangle) Al₂O₃, (\bullet) Pt/SiO₂, (\blacksquare) Pt/Al₂O₃. NO₂ = 1000 ppm, C₃H₈ = 1000 ppm, O₂ = 10%, catalyst weight = 0.2 g, gas flow rate = 66 cm³ min⁻¹.

SiO₂-Al₂O₃ physical mixtures is clearly higher than that from NO₂ reduction on alumina. Moreover, N₂O was not formed as a reduction product of NO₂ on alumina. Therefore the above-mentioned hypothesis can be ruled out. Yokoyama and Misono [10] reported recently that mixing Mn₂O₃ to Ce-ZSM-5 promoted NO reduction activity at lower temperatures. Similar results were also obtained for mixtures of Au/Al₂O₃ and Mn₂O₃ [11]. They concluded that the effects are due to the promotion of NO oxidation to NO₂ by Mn₂O₃. The present cooperative effect, however, cannot be explained only by contribution of NO oxidation reaction on Pt/SiO₂.

A lot of mechanisms have been proposed so far concerning the selective NO reduction with hydrocarbons in the presence of an excess of oxygen. In general, they can be classified into the following two suggestions.

- (a) N_2 is formed through NO decomposition based on a redox mechanism, while the hydrocarbon and/or oxygen regenerate or maintain the surface active sites [12,13]. The hydrocarbon may remove the surface oxygen poisoning the active sites. Oxygen may prevent the over-reduction of the active sites [14].
- (b) N₂ is formed from a series of reaction steps between the hydrocarbon and NO possibly via a partially oxidized hydrocarbon [15–17] or NO₂ [9,18,19], for the formation of which oxygen is necessary. Nitrogen-containing intermediates such as isocyanates [20] and organic nitro compounds [21] have been proposed as reaction intermediates leading to the formation of N₂. An active carbonaceous material, which is formed from the hydrocarbon, was also proposed as responsible for the formation of N₂ [17,22]. Oxygen may prevent the deposition of carbonaceous deposits which would cover the active sites [23].

In this study, it is clear that the NO reduction proceeds by cooperation of Pt/SiO_2 and Al_2O_3 . Since propane conversion to CO_2 on Pt/SiO_2 was little influenced by mixing with Al_2O_3 , it is suggested that the initial rate-determining step be the oxidation of propane by O_2 on platinum surface. The following reaction steps leading to the formation of N_2 and N_2O are not clear at the moment but the presence of alumina definitely participates in the reduction of NO. Therefore, mechanism (a) is unlikely because NO reduction should proceed on single catalytically active sites, while N_2 is formed by cooperation of the two catalytic species in the present case.

In the case of mechanism (b), spillover or gas phase transfer of some reaction intermediates from platinum to alumina or vice versa might explain the cooperative effect. Since no other carbon-containing compounds than CO₂ and propane were detected in the gas phase, the intermediates should not be so stable. The effect of grain size can be explained by the short life of the intermediates. Possible candidates are partially-oxidized hydrocarbons on platinum or activated hydrocarbons on alumina. Nishizaka and Misono [24,25] reported recently that the presence of both palladium and acid site

of H-ZSM-5 is necessary for the selective reduction of NO with methane to take place, although the catalyst was not a physical mixture. The present study may be related to their results. In any case it is natural to think that the activation of NO, oxygen and the hydrocarbon is needed for the selective reduction [26]. Alumina and platinum may act as the active species for activation of the hydrocarbon, NO and oxygen.

An attractive mechanism was proposed recently by Lukianov et al. for NO reduction on Co-ZSM-5 and H-ZSM-5 [27]. In their mechanism, the combustion of the hydrocarbon proceeds homogeneously initiated by radical formation from NO₂ and the catalyst serves to retain a reaction intermediate such as organic nitro compounds which could react with NO or NO2 to form a N-N bond. The cooperative effect in the present study can be explained by assuming a homogeneous propane combustion in the gas phase. The homogeneous combustion may be initiated on platinum and partially oxidized hydrocarbons can reach through gas phase to the surface of alumina, where NO reduction occurs. However, NO₂ does not seem to participate in propane combustion as reported by Lukianov et al. because the propane conversion to CO₂ for the NO-C₃H₈-O₂ reaction was found almost the same as that for the C₃H₈-O₂ reaction. Further studies are necessary to elucidate the actual mechanism of the cooperative effect of Pt/SiO₂ and Al_2O_3 .

4. Summary

The selective reduction of NO with propane in the presence of oxygen was investigated over Pt/SiO₂, Pt/ Al₂O₃, Al₂O₃, and physical mixtures of Pt/SiO₂ and Al₂O₃. Although Pt/SiO₂ did not show any deNOx activity, Pt/Al₂O₃ was active for NO reduction to N₂ and N₂O at about 300-400°C. Al₂O₃ catalyzed NO reduction to N₂ only above 400°C without giving N₂O. It was found that the deNOx activity similar to Pt/Al₂O₃ was observed for physical mixtures of Pt/SiO₂ and Al₂O₃, especially when the grain size was small. Since the state of the physical mixture did not change during the activity test, it was concluded that the reduction of NO to N_2 and N_2 O results from successive reaction steps over platinum and alumina. Catalytic activity tests using NO₂ revealed that the cooperative effect cannot be explained by promotion of NO oxidation to NO₂ on Pt/ SiO₂. Spillover, gas phase transfer of certain reaction intermediates from platinum to alumina or vice versa or homogeneous oxidation reaction could account for the effect.

Acknowledgement

We would like to express our sincere thanks to Mr. Yoichi Ohno and Mr. Mitsunori Tabata of Cosmo Research Institute for taking the micrographs of the samples.

References

- M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo and N. Mizuno, Shokubai 32 (1990) 430.
- [2] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito and M. Tabata, Appl. Catal. 64 (1990) L1.
- [3] M. Misono and K. Kondo, Chem. Lett. (1991) 1001.
- [4] K. Yogo, M. Ihara, I. Terasaki and E. Kikuchi, Chem. Lett. (1993) 229.
- [5] Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki and T. Ito, Catal. Lett. 6(1990) 239.
- [6] Y. Teraoka, T. Harada, T. Iwasaki, T. Ikeda and S. Kagawa, Chem. Lett. (1993) 773.
- [7] G. Zhang, T. Yamaguchi, H. Kawakami and T. Suzuki, Appl. Catal. B 1 (1992) L15.
- [8] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, T. Yoshinari, M. Tabata, F. Suganuma and H. Tsuchida, in: Advanced Materials '93, V/A: Ecomaterials, Vol. 18A, ed. R. Yamamoto (Elsevier, Amsterdam, 1994) pp. 421-424.
- [9] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito and M. Tabata, Appl. Catal, 70 (1991) L15.
- [10] C. Yokoyama and M. Misono, Shokubai 36 (1994) 163.
- [11] A. Ueda, T. Oshima and M. Haruta, Proc. 1st World Congr. on Environmental Catalysis (1995) p. 343.
- [12] R. Burch and P. Millington, Appl. Catal. B 2 (1993) 101.
- [13] T. Inui, S. Iwamoto, S. Kojo and T. Yoshida, Catal. Lett. 13 (1992) 87.
- [14] J.L. d'Itri and W.H.M. Sachtler, Catal. Lett. 15 (1992) 289.
- [15] C.N. Montreuil and M. Shelef, Appl. Catal. B 1 (1992) L1.
- [16] M. Sasaki, H. Hamada, Y. Kintaichi and T. Ito, Catal. Lett. 15 (1992) 297.
- [17] C.J. Bennett, P.S. Bennett, S.E. Golunski, J.W. Hayes and A.P. Walker, Appl. Catal. A 86 (1992) L1.
- [18] C. Yokoyama and M. Misono, Catal. Today 22 (1994) 59.
- [19] E. Kikuchi and K. Yogo, Catal. Today 22 (1994) 73.
- [20] Y. Ukisu, S. Sato, G. Muramatsu and K. Yoshida, Appl. Catal. B 11 (1991) 177.
- [21] C. Yokoyama and M. Misono, J. Catal. 150 (1994) 9.
- [22] G.P. Ansell, A.F. Divell, S.E. Golunski, J.W. Hayes, R.R. Rajaram, T.J. Treux and A.P. Walker, Appl. Catal. B 2 (1993) 81.
- [23] J.O. Petunchi and W.K. Hall, Appl. Catal. B 3 (1993) 239.
- [24] Y. Nishizaka and M. Misono, Chem. Lett. (1993) 1295.
- [25] Y. Nishizaka and M. Misono, Chem. Lett. (1994) 2237.
- [26] M. Shelef, Chem. Rev. 95 (1995) 209.
- [27] D.B. Lukyanov, G. Sill, J.L. d'Itri and W.K. Hall, J. Catal. 153 (1995) 265.